This work is concerned with the study of the adaptivity properties of nonparametric regression estimators over the d-dimensional sphere within the global thresholding framework. The estimators are constructed by means of a form of spherical wavelets, the so-called needlets, which enjoy strong concentration properties in both harmonic and real domains. The author establishes the convergence rates of the Lp-risks of these estimators, focusing on their minimax properties and proving their optimality over a scale of nonparametric regularity function spaces, namely, the Besov spaces.

Adaptive global thresholding on the sphere / Durastanti, Claudio. - In: JOURNAL OF MULTIVARIATE ANALYSIS. - ISSN 0047-259X. - 151:(2016), pp. 110-132. [10.1016/j.jmva.2016.07.009]

Adaptive global thresholding on the sphere

Durastanti, Claudio
2016

Abstract

This work is concerned with the study of the adaptivity properties of nonparametric regression estimators over the d-dimensional sphere within the global thresholding framework. The estimators are constructed by means of a form of spherical wavelets, the so-called needlets, which enjoy strong concentration properties in both harmonic and real domains. The author establishes the convergence rates of the Lp-risks of these estimators, focusing on their minimax properties and proving their optimality over a scale of nonparametric regularity function spaces, namely, the Besov spaces.
2016
Adaptivity; Besov spaces; Global thresholding; Needlets; Nonparametric regression; Spherical data; U-statistics; Statistics and Probability; Numerical Analysis; Statistics, Probability and Uncertainty
01 Pubblicazione su rivista::01a Articolo in rivista
Adaptive global thresholding on the sphere / Durastanti, Claudio. - In: JOURNAL OF MULTIVARIATE ANALYSIS. - ISSN 0047-259X. - 151:(2016), pp. 110-132. [10.1016/j.jmva.2016.07.009]
File allegati a questo prodotto
File Dimensione Formato  
global.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 544.77 kB
Formato Adobe PDF
544.77 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1266566
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact